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Abstract. Consolidation of memories during sleep may involve neuronal replay of daytime ac-
tivity patterns. A precise replay phenomenon was observed in the song system nucleus RA. We
developed statistical pattern filtering to investigate replay in HVc, where spiking activity is more
variable. Long spike sequences during sleep were convolved with filters constructed from exemplar
auditory spike sequences. Examining peaks in the filter responses, we found many examples of
HVc spike trains with temporal patterns similar to the exemplars, confirming a replay phenomenon
for HVc. Statistical pattern filtering has general utility for finding spike patterns when a referent
pattern is known.

Introduction In the zebra finch forebrain nucleus robustus archistriatalis (RA), neurons generate
sequences of spike bursts during spontaneous sleep activity that exhibit similar temporal patterns as
the pre-motor activity during singing and the auditory responses to song playback in the sleeping
animal [2, 3, 11]. This sleep replay phenomenon is hypothesized to play an important role in
learning and memory consolidation of the birdsong system [2, 7], which gives rise to the question of
whether and how other parts of the song system participate in replay during sleep. The forebrain
nucleus HVc is a sensorimotor center of the birdsong system. It projects to RA, and is thought
to play an important role in vocal learning, auditory input integration, and higher level motor
command. State-dependent auditory responses have also been observed for the HVc [9, 10]. We
thus investigated whether the replay phenomenon also occurs in spontaneous sleep activity of HVc.

Instead of searching for individual replayed spike bursts [2], our goal was to find burst sequences
that have similar temporal patterns as pre-motor activity or auditory responses [6, 8]. This is
challenging for two reasons. First, unlike pre-motor or auditory data, for sleep spontaneous neuronal
data, there are no reliable observables to mark the occurrence of neuronal events of interest. Second,
the neuronal activity in HVc has far more variability than RA activity.

Pattern filtering We developed a so-called pattern filtering methodology to address the above
difficulty. In general, let Z be an exemplar spike train with spikes registered at z1 < z2 < · · · < zp,
zk ∈ [0, σ]. Fix K(x) ≥ 0 and B(x) ≤ 0, with K(x) > 0 only for x ∈ (−ε, ε). The functions will be
referred to as the “time window function” for a spike and the “background function”, respectively.
Define F on [0, σ] by

F (x) =
{

max1≤k≤p K(x− zk) if x ∈ ⋃p
k=1(zk − ε, zk + ε)

B(x) otherwise
(1)

Let T be a long sequence of spikes at t1 < · · · < tN , tk ∈ [0, τ ]. Regard T as a series of δ
functions, i.e., T (x) =

∑N
i=1 δ(x− ti). Define R on [0, T ] by

R(x) =
∫ σ

0
F (s)T (x + s) ds. (2)
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Given fixed threshold θ > 0, we then search for local maximum points x1, . . . , xl of R(x) with
R(x) ≥ θ and output them as plausible locations in T where spike sequences similar to S occur.

The search proceeds rapidly because R is the linear convolution between Φ(s) := F (−s), s ∈
[−σ, 0] and T , which can be computed efficiently by the fast Fourier transform, leading to quick
detection of plausible patterns from T . We refer to Φ as the pattern filter associated with Z, and
the convolution pattern filtering .

The underlying statistical model Pattern filtering is a likelihood ratio hypothesis test, as
opposed to likelihood test in the unitary event analysis [4, 5]. It is based on three statistical
assumptions. First, each spike sequence is generated randomly either conditional on a sequence
{z1, . . . , zp} (“target pattern”), or a symbol “background”. Second, spikes in the sequence are
conditionally independent , such that (1) given the sequence being generated by the target pattern,
the spiking probability is p0 at each location in J :=

⋃p
k=1(zk − ε, zk + ε), and q0 at each location

outside J , and (2) given the sequence being generated by the background, the probability is q at
any location. Third, and naturally, p0 > q ≥ q0.

Let T be as previous. Given x, let S ⊂ T consist of spikes in [x, x + σ]. Register S on the same
time frame as the target pattern. If n spikes of S fall inside J , and m outside, then it is not hard
to show

L(S) := log
P (S|target)

P (S|background)
= log

pn
0qm

0

qn+m
= nα−mβ, α = log

p0

q
> 0, β = log

q

q0
≥ 0 (3)

Define F by (1), with K(s) = α for s ∈ (−ε, ε) and 0 for s 6∈ (−ε, ε) and B(s) ≡ −β. Then
L(S) = R(x) as in (2). Since x is arbitrary, R consists of the log-likelihood ratios at all locations
in T . Thus, by locating peaks in R with values larger than a given threshold, plausible patterns
similar to the target are detected.

Note that the assumption of conditional independence is not an assumption of independent
firing. Moreover, it can be shown that both the “sliding sweeps” algorithm [1, 8] and the cross-
correlation method [2, 6] can be implemented by pattern filtering. Finally, it is straightforward to
generalize pattern filtering to multiple units, incorporating spatial as well as temporal structure of
neural activity.

Preliminary Results We implemented pattern filtering for HVc single unit data recorded during
sleep. In most cases, it took less than 5 seconds to process a spike train of 10 minutes duration. In
the example illustrated in the figure to the right,
there were 126 responses collected while the
bird’s own song was broadcast to the sleeping
bird (Fig. A). Note the variability in the re-
sponse. These responses were used to make a
bank of pattern filters representing the response
to the motif in the song. These filters were sub-
sequently applied to recordings of the same neu-
ron collected when no acoustical stimulus was
presented. From a total of approximately 15
minutes of recordings of spontaneous activity,
we detected 33 exemplars of spontaneous activ-
ity whose filter responses were high enough.

A

B

(All spike sequences are 580 ms long)

These are displayed in Fig. B. Note the similarity of matching between the response to BOS and
the spontaneous spike sequences. This is the first quantitative evidence that replay during sleep
occurs in a song system nucleus other than RA.

2



References

[1] M Abeles and G M Gerstein. Detecting spatiotemporal firing patterns among simultaneously
recorded single neurons. J. Neurophysiol., 60:909–924, September 1988.

[2] A S Dave and D Margoliash. Song replay during sleep and computational rules for sensorimotor
vocal learning. Science, 290:812–816, October 2000.

[3] A S Dave, A C Yu, and D Margoliash. Behavioral state modulation of auditory activity in a
vocal motor system. Science, 282:2250–2253, December 1998.

[4] S Grün, M Diesmann, and A Aertsen. Unitary events in multiple single-neuron spiking activity:
I. detection and significance stimulus properties. Neural Comput., 14(1):43–80, January 2002.

[5] S Grün, M Diesmann, and A Aertsen. Unitary events in multiple single-neuron spiking activity:
Ii. nonstationary data. Neural Comput., 14(1):81–120, January 2002.

[6] K Louie and M A Wilson. Temporally structured replay of awake hippocampal ensemble
activity during rapid eye movement sleep. Neuron, 29:145–156, 2001.

[7] D Margoliash. Do sleeping birds sing? Population coding and learning in the bird song system.
Prog. Brain Res., 130:319–331, 2001.
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